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Abstract

Theories of soft sets and rough sets are two different approaches to vagueness. They can be
combined to form a powerful mathematical tool for dealing uncertain problems. Soft rough set
introduced by Feng[7] is the connection between these approaches and it is the generalization of
rough set with respect to the soft approximation space. This paper extend soft rough approximation
model by defining new soft rough approximation operators via ideal. When the ideal is the least ideal
of ℘(U), these two approximations coincide. We present the essential properties of new operators
via ideal and supported by illustrative examples. The notion of soft rough equal relations via ideal
is proposed and related examples are examined. We also show that rough set via ideal [26] can be
viewed as a special case of soft rough set via ideal, and these two notions will coincide provided that
the underlying soft set is a partition soft set. We obtain the structure of soft rough set via ideal,
gives the structure of topologies induced by soft set and an ideal. Moreover, an example containing a
comparative analysis between rough sets via ideal and soft rough sets via ideal is given. We show that
soft rough approximation via ideal could provide a better approximation than rough set via ideal.
Finally in the last section application of data reduction are done and an algorithm of multi-attribute
decision making based on soft rough sets via ideal is given.

keywords: soft sets, rough approximations via ideal, soft rough sets via ideal, rough sets via ideal,
soft relative postive regions via ideal, soft relative reduction via ideal.
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1. Introduction

In recent years vague concepts have been used in different areas as medical applications, pharmacology,
economics, engineering since the classical mathematics methods are inadequate to solve many complex
problems in these areas. Traditionally crisp (well-defined) property P(x) is used in mathematics, i.e.,
properties that are either true or false and each property defines a set: {x : x has a property P}[19].
Researchers have proposed many methods for vague notions. The most successful theoretical approach
to the vagueness is undoubtedly fuzzy set theory [33] proposed by Zadeh in 1965. The basic idea of fuzzy
set theory hinges on fuzzy membership function, which allows partial membership of elements to a set,
i.e., it allows elements to belong to a set to a degree.

Rough set theory [20] is an extension of set theory for the analysis of a vague and inexact description
of objects. Pawlak rough approximations are based on equivalence relation or their induced partition and
subsystem, this requirement is not satisfied in many situations and thus limits the application domain
of the rough set model. To solve this issue, generalizations of rough sets were considered. There are at
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least two approaches to generalize rough sets. One is to consider similarity, tolerance or general binary
relation (see e.g.[30], [31],[32], [36]) rather than equivalence relation. The other is to extend the partition
to cover (see e.g.[2, 3, 34, 36, 37]). Furthermore, as generalizations, rough sets were defined by fuzzy
relation (see e.g.[5, 11, 12, 21, 22, 23, 24]) or a mapping [9, 26]. However, many of these generalizations
have not been interconnected with each other.

Molodtsov [16] proposed a completely new approach, which is called soft set theory, for modelling
uncertainty. Molodtsov initiated a novel concept of soft set theory [16], which is a completely new ap-
proach for modeling vagueness in 1999. A soft set is a collection of approximate descriptions of an object.
Molodtsov [16, 17] presented the fundamental results of the new theory and successfully applied it to sev-
eral directions such as smoothness of functions, game theory, operations research, Riemann-integration,
Perron integration,theory of probability etc. He also showed that how soft set theory is free from the
parametrization inadequacy syndrome of fuzzy set theory, rough set theory and etc. Fuzzy sets, rough
sets and soft sets are closely related [1].

Maji et al. investigated the concept of fuzzy soft set in 2001 [13], a more generalized concept, which
is a combination of fuzzy set and soft set and also studied some of its properties. This line of exploration
was further investigated by several researchers [14, 28, 29]. Soft set and fuzzy soft set theories have many
applications in several directions.

Feng et al. investigated the concept of soft rough set in 2010 [6] which is a combination of soft set
and rough set. In [6, 7] essential properties of soft rough approximations were discussed. In [25], Shabir
introduced a new approach to soft rough sets called modified soft rough set (MSR-set) and studied some
of their basic properties. In [10] a new concept of soft class and soft class operations based on decision
makers set were defined and some fundamental properties of soft class operations were investigated. In
[18] soft rough sets and soft rough approximation operators on a complete atomic Boolean lattice were
defined. Feng discussed soft set based group decision making in [8]. This study can be seen as a first
attempt toward the possible application of soft rough approximations in multicriteria group decision
making under vagueness.

.. It is well known that (fuzzy) ideal is an important tool for investigating rough sets (see e.g.[4,
27]). In Pawlak rough set model, any vague concept of a universe can be defined by a pair of precise
concepts called the lower and upper approximations. Particularly, the empty set φ is a concept and the
set {φ} is a special ideal. Hence, we have the following equivalent description of Pawlaks approximations.
That is, the lower approximation contains all objects which the intersections between equivalence classes
and the complement of the concept belong to {φ}, and the upper approximation consists of all objects
which the intersections between equivalence classes and the concept do not belong to {φ}. It is a natural
question to ask what does happen if we substitute a general ideal instead of the particular one. Here, the
role of the ideal is to bring together some knowable and interrelated concepts of the universe, through
which we can approximately obtain the imprecise concept. Since a given ideal has more concepts than that
of {φ}, the approximations based on ideals seem to enrich the Pawlaks approximations. In [27] we define
new approximation operators in more general setting of complete atomic Boolean lattice by using an ideal.

The aim of this paper is to define new soft rough approximation operators in terms of an ideal. Our
approach can be viewed as a generalization of several approaches that can be found in the literature.
The reminder of this paper is organized as follows. In the following section, we recall some fundamental
notions and propositions to be used in the present paper. In Section 3, the definition of soft rough
approximations via ideal is proposed and basic properties are examined. These decrease the soft lower
approximation and increase the soft upper approximation and hence increase the accuracy measure. We
show by example that soft rough approximation via ideal reduce the soft boundary in comparison of soft
rough approximation and the accuracy measure is better than the soft accuracy measure. So soft rough
approximation via ideal could provide a better approximation than soft rough set. We also define soft
rough equal relations in terms of soft rough approximation via ideal and explore some related properties.
Finally, through an example we present a comparative analysis between rough set via ideal and soft
rough set via ideal. In section 4 we investigate the relationships between soft sets, topologies and an
ideal, obtain the structure of topologies induced by a soft set and an ideal. In section 5 we investigate
the relation between soft rough via ideal and rough set via ideal [27]. We show that rough set via ideal
may be considered as a special case of soft rough set via ideal. Also, we define a new pair of soft rough



3

approximation operators via ideal and giving the relationship between this pair and previous one.
Soft rough set approximation via ideal is a worth considering alternative to the soft rough set approxi-
mation and rogh approximation via ideal.

2. Preliminaries

In this section, we present the basic definitions and results of soft set theory which may found in
earlier studies [15, 16, 17]. Throughout this paper, U refers to an initial universe, the complement of X
in U is denoted by X ′, E is a set of parameters, ℘(U) is the power set of X, and A ⊆ E.

Definition 2.1 [16] Let U be a universal set and E be a set of parameters. Let A be a non empty
subset of E. A soft set over A, with support A ,denoted by fA on U is defined by the set of ordered pairs

fA = {(e, fA(e)) : e ∈ E, fA(e) ∈ ℘(U)},

or is a function fA : E → ℘(U) s.t

fA(e) 6= φ ∀ e ∈ A ⊆ E and fA(e) = φ if e 6∈ A.

.

From now on, we will use S(U,E) instead of all soft sets over U .

Definition 2.2 [16] The soft set fφ ∈ S(U,E) is called null soft set, denoted by Φ, Here Fφ(e) =
φ, ∀ e ∈ E.

Definition 2.3 [15] Let fA ∈ S(U,E). If fA(e) = X,∀ e ∈ A, then fA is called A-absolute soft

set, denoted by Ã.
If A = E, then the A-absolute soft set is called absolute soft set denoted by ẼU .

Definition 2.4 [15] Let fA, gB ∈ S(U,E). fA is a soft subset of gB , denoted fA v gB if fA(e) ⊆
gB(e),∀ e ∈ E.

Definition 2.5 [15] Let fA, gB ∈ S(U,E). Union of fA and gB , is a soft set hC defined by
hC(e) = fA(e)

⋃
gB(e),∀ e ∈ E, where C = A ∪B. That is,

hC = fA t gB

Definition 2.6 [15] Let fA, gB ∈ S(U,E). Intersection of fA and gB , is a soft set hC defined by
hC(e) = fA(e)

⋂
gB(e),∀ e ∈ E where C = A×B. That is

hC = fA u gB .

Definition 2.7 [15] Let fA ∈ S(U,E). The complement of fA, denoted by f ′A is defined by
f ′A(e) = (f(e))′,∀ e ∈ E.

Definition 2.8 [7] Let fA ∈ S(U,E).

i) fA is full, if
⋃
a∈Af(a) = U ;

ii) fA is called bijective if fA is called full and for a1, a2 ∈ A and a1 6= a2, f(a1) ∩ f(a2) = φ

iv) fA is called partition if {f(a) : a ∈ A} forms a partition of U.
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Obviously, every partition soft set is full.

Definition 2.9 [35] Let fA ∈ S(U,E).

i) fA is called keeping intersection, if for any a, b ∈ A, there exists c ∈ A such that f(a) ∩ f(b) = f(c);

ii) fA is called keeping union, if for any a, b ∈ A, there exists c ∈ A such that f(a) ∨ f(b) = f(c);

ii) fA is called topological, if {f(a) : a ∈ A} forms a topology on U.

Definition 2.10 [7]Let fA ∈ S(U,E). Then the pair P = (U, fA) is called soft approximation space.
We define a pair of operators apr

P
, aprP : ℘(U)→ ℘(U) as follows:

apr
P

(X) = {u ∈ U : ∃a ∈ A, s.t u ∈ f(a) ⊆ X},

aprP (X) = {u ∈ U : ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X 6= ∅}

The elements apr
P

(X) and aprP (X) are called the soft P-lower and the soft P-upper approximations
of X. Moreover, the sets

PosP (X) = apr
P

(X)

NegP (X) = (aprP (X))′

BndP (X) = aprP (X)− apr
P

(X)

are called the soft P-positive region, the soft P-negative region and the soft P-boundary region of X,
respectively. If apr

p
(X) = aprP (X), X is said to be soft P -definable; otherwise X is called a soft P -rough

set.

Definition 2.11[26] Let B = (B,≤) be a bounded distributive lattice. A non empty subset I of
B is called an ideal of B if for all x, y ∈ B

(i) x, y ∈ I imply x ∨ y ∈ I;

(ii) If x ∈ I with y ≤ x, then y ∈ B.

Definition 2.12[26] Let B = (B,≤) be a complete atomic Boolean lattice and let ϕ : A(B)→ B be
any mapping. Let I be any ideal on B. For any element x ∈ B, let

x∇I =
∨
{x ∧ a : a ∈ A(B), ϕ(a) ∧ x′ ∈ I and a 6= 0}, and

x4I =
∨
{x ∨ a : a ∈ A(B), ϕ(a) ∧ x 6∈ I and a 6= 1}.

The elements x∇I and x4I are called the lower and the upper approximations of x via ideal I with
respect to ϕ respectively. Two elements x and y are called equivalent via ideal I if they have the same up-
per and lower approximations via ideal I. The resulting equivalence classes are called rough sets via ideal I.

Proposition 2.13[26] Let B = (B,≤) be a complete atomic Boolean lattice and let ϕ : A(B) → B
be any mapping. Let I be any ideal on B, then for all a ∈ A(B) and x ∈ B,

i) a ≤ x∇I ⇐⇒ ϕ(a) ∧ x′ ∈ I and a ≤ x;

ii) a ≤ x4I ⇐⇒ ϕ(a) ∧ x 6∈ I or a ≤ x.

Proposition 2.14 [26] Let B = (B,≤) be a complete atomic Boolean lattice and let ϕ : A(B) → B
be any mapping. Let I be any ideal on B, then

i) 04I=0 and 1∇I=1;
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Table 1: Tabular representation of the soft set FA
u1 u2 u3 u4 u5 u6

e1 0 1 1 0 0 0
e2 0 0 0 0 1 0
e3 1 0 0 1 0 0
e4 0 1 0 0 0 1

ii) x ≤ y implies x∇I ≤ y∇I and x4I ≤ y4I .

Remark 2.15[26](1) In general, x∇I ≤ x ≤ x4I .
(2) The two operations suggested in Definition 2.12 are suitable also for other operators based on binary
relations. If U is any universal set, then ℘(U) is a complete atomic boolean lattice whose atoms are
singleton subsets of U. Let R and be a general relation on U and I any ideal on U. We define a mapping
ϕ : A(B) −→ B : U −→ ℘(U), x −→ R(x) where R(x) = {y ∈ U : xRy}. Then for any X ⊆ U ,
X∇I = ∪{x ∈ U : R(x) ∩X ′ ∈ I} ∩X and X4I = ∪{x ∈ U : R(x) ∩X 6∈ I} ∪X
If X∇I = X4I , X is said to be R-I-definable; otherwise X is called R-I-rough set.

3. Soft Rough Approximation operators via ideal

In this section we introduce soft rough approximations via ideal and soft rough set via ideal.

Definition 3.1 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. The triple
(U, fA, I) is called soft approximation space via ideal. We define a pair of operators apr

I
, aprI : ℘(U)→

℘(U) as follows:

apr
I
(X) = {u ∈ X : ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X ′ ∈ I},

aprI(X) = {u ∈ U : ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X 6∈ I}

The elements apr
I
(X) and aprI(X) are called the soft I-lower and the soft I-upper approximations of

X via ideal. In general, we refer to apr
I
(X) and aprI(X) as soft rough approximations of X with respect

to P via ideal. Moreover, the sets

PosI(X) = apr
I
(X)

NegI(X) = (aprI(X))′

BndI(X) = aprI(X)− apr
I
(X)

are called the soft I-positive region, the soft I-negative region and the soft I-boundary region of X, re-
spectively. If apr

I
(X) = aprI(X), X is said to be soft I-definable; otherwise X is called a soft I-rough set.

Proposition 3.2 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then apr

I
(X) ⊆ aprI(X).

Proof: Let u ∈ apr
I
(X), then ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X ′ ∈ I. If f(a) ∩ X ∈ I. So, (f(a) ∩

X)∪ (f(a)∩X ′) ∈ I by properties of ideal. Thus f(a)∩ (X ∪X ′) = f(a)∩U = f(a) ∈ I a contradiction.
Hence f(a) ∩X 6∈ I and consequently apr

I
(X) ⊆ aprI(X).

By Definition 3.1, we immediately have that X ⊆ U is soft I-definable if the soft I-boundary region
BndI(X) of X is empty. Also, By Proposition 3.2, we have apr

I
(X) ⊆ aprI(X) for all X ⊆ U . Never-

theless, it is worth noticing that X ⊆ aprI(X) does not hold in general.

Example 3.3 Let U = {u1, u2, u3, u4, u5, u6}, E = {e1, e2, e3, e4, e5, e6} and A = {e1, e2, e3, e4} ⊆ E.
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Table 2: Tabular representation of the soft set FA
u1 u2 u3 u4 u5 u6

e1 1 0 0 0 0 1
e2 0 0 0 0 1 0
e3 0 0 0 1 0 0
e4 1 1 0 0 1 0

Let fA be a soft over U given by Table 1. Let I be an ideal on U defined as follows
I = {φ, {u1}, {u3}, {u6}, {u1, u3}, {u1, u6}, {u3, u6}, {u1, u3, u6}}. Let X = {u3, u4, u5} ⊆ U . So X ′ =
{u1, u2, u6}. Thus we have apr

I
(X) = {u4, u5} , and aprI(X) = {u1, u4, u5}. So apr

I
(X) 6= aprI(X)

and X is soft I-rough set. In this case X = {u3, u4, u5} 6⊆ aprI(X). Moreover, it is easy to see that
PosI(X) = {u4, u5}, NegI(X) = {u2, u3, u6} and BndI(X) = {u1}. On the other hand, one can con-
sider X1 = {u1, u4, u6} ⊆ U . Since apr

I
(X1) = {u1, u4} = aprI(X1), then X1 is a soft I-definable set.

Proposition 3.4 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then for all X ⊆ U

i) apr
I
(X) = X ∩

⋃
{f(a) : a ∈ A and f(a) ∩X ′ ∈ I};

ii) aprI(X) =
⋃
{f(a) : a ∈ A and f(a) ∩X 6∈ I}.

Proof: i) Let u ∈ apr
I
(X). So u ∈ X and ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X ′ ∈ I. Hence x ∈

X ∩
⋃
{f(a) : a ∈ A and f(a) ∩X ′ ∈ I}. The other inclusion can be proved similarly.

Definition 3.5 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. For any X ⊆ U measure of accuracy for soft set with respect to
X denoted by AP (X) is defined by

AP (X) =
|apr

P
(X)|

|aprP (X)|
where |apr

P
(X)| and |aprP (X)|, denotes the cardinalities of the sets apr

P
(X) and aprP (X) respectively.

Also, measure of accuracy for soft set with respect to X via ideal denoted by AI(X) is defined by

AI(X) =
|apr

I
(X)|

|aprI(X)|
where |apr

I
(X)| and |aprI(X)|, denotes the cardinalities of the sets apr

I
(X) and aprI(X) respectively

Now, we show in the next example that soft rough approximations via ideal provide a better approxi-
mation than soft rough approximations which provide a better approximation than rough approximations.

Example 3.6 Let U = {u1, u2, u3, u4, u5, u6}, E = {e1, e2, e3, e4, e5, e6} and A = {e1, e2, e3, e4} ⊆ E.
Let fA be a soft over U given by Table 2. Let I be an ideal on U defined as follows
I = {φ, {u1}, {u2}, {u3}, {u1, u2}, {u1, u3}, {u2, u3}, {u1, u2, u3}}. Let X = {u1, u5} ⊆ U . So X ′ =
{u2, u3, u4, u6}. Thus apr

P
(X) = {u5} , apr

I
(X) = {u1, u5} ∩ {u1, u2, u5} = {u1, u5}, aprP (X) =

{u1, u2, u5, u6} and aprI(X) = {u1, u2, u5}. So apr
P

(X) ⊆ apr
I
(X) ⊆ X ⊆ aprI(X) ⊆ aprP (X). There-

fore AP (X) =
apr

P
(X)

aprP (X) = 1
4 and AI(X) =

apr
I
(X)

aprI(X) = 2
3 . Consequently, AI(X) > AP (X). Consequently

accuracy measure via ideal is better than accuracy measure for soft sets.

Proposition 3.7 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal.

i) apr
I
(φ) = φ = aprI(φ)

ii) apr
I
(U) = aprI(U) =

⋃
a∈A

f(a);

iii) X ⊆ Y implies apr
I
(X) ⊆ apr

I
(Y ) and aprI(X) ⊆ aprI(Y ).

iv) I ⊆ J implies apr
I
(X) ⊆ apr

J
(X)
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Proof: (i)Clearly, apr
I
(φ) = φ. Also, aprI(φ) =

⋃
{f(a) : a ∈ A and f(a) ∩ φ 6∈ I} =

⋃
{f(a) : a ∈ A and φ 6∈ I} =

φ .
(ii) apr

I
(U) =

⋃
{f(a) : a ∈ A and f(a) ∩ φ ∈ I} =

⋃
{f(a) : a ∈ A and φ ∈ I} =

⋃
a∈A

f(a). Also, since

f(a) 6∈ I ∀a ∈ A, then aprI(U) =
⋃

a∈A
f(a)

(iii) Assume that X ⊆ Y and u ∈ apr
I
(X). So u ∈ X and ∃a ∈ A, s.t u ∈ f(a), f(a) ∩X ′ ∈ I. Since

Y ′ ⊆ X ′, then f(a) ∩ Y ′ ∈ I by properties of ideal. Consequently, u ∈ apr
I
(Y ). The other part can be

proved similarly.
(iv) Obvious

Proposition 3.8 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then for all X,Y ⊆ U

i) apr
I
(X ∪ Y ) ⊇ apr

I
(X) ∪ apr

I
(Y )

ii) apr
I
(X ∩ Y ) ⊆ apr

I
(X) ∩ apr

I
(Y )

iii) If fA is keeping intersections, then apr
I
(X ∩ Y ) = apr

I
(X) ∩ apr

I
(Y )

iv) If fA is partition, then apr
I
(X ∩ Y ) = apr

I
(X) ∩ apr

I
(Y )

v) aprI(X ∪ Y ) = aprI(X) ∪ aprI(Y )

vi) aprI(X ∩ Y ) ⊆ aprI(X) ∪ aprI(Y )

Proof: (i) and (ii) follow immediately by Proposition 3.7.
(iii) By (i), apr

I
(X ∩ Y ) ⊆ apr

I
(X) ∩ apr

I
(Y ). Let u ∈ apr

I
(X) ∩ apr

I
(Y ), then u ∈ X ∩ Y and

there exists a, b ∈ A such that u ∈ f(a), f(a) ∩X ′ ∈ I, u ∈ f(b), and f(b) ∩X ′ ∈ I. Since fA is
keeping intersections, then there exists c ∈ A, such that f(a) ∩ f(b) = f(c). By properties of ideal,
f(a) ∩ f(b) ∩X ′ ∈ I. So we prove that there exists c ∈ A, such that u ∈ f(c) and f(c) ∩X ′ ∈ I. Hence
u ∈ apr

I
(X ∩ Y ) and consequently, apr

I
(X ∩ Y ) = apr

I
(X) ∩ apr

I
(Y ).

(iv) Let u ∈ apr
I
(X)∩apr

I
(Y ), then u ∈ X ∩ Y and there exists a, b ∈ A such that u ∈ f(a), f(a) ∩X ′ ∈

I, u ∈ f(b), and f(b) ∩X ′ ∈ I. Since fA is partition, then f(a) = f(b). So, Therefore u ∈ apr
I
(X ∩ Y ).

Consequently, apr
I
(X ∩ Y ) = apr

I
(X) ∩ apr

I
(Y ).

(v)By Proposition 3.7, aprI(X ∪ Y ) ⊇ aprI(X) ∪ aprI(Y ). On the other hand, let u ∈ aprI(X ∪ Y ),
then there exists a ∈ A such that u ∈ f(a), f(a) ∩ (X ∪ Y ) = (f(a) ∩ X) ∪ (f(a) ∩ Y ) 6∈ I. Hence
either f(a) ∩X 6∈ I or f(a) ∩ Y 6∈ I by properties of ideal. So u ∈ aprI(X) ∪ aprI(Y ) and consequently,
aprI(X ∪ Y ) = aprI(X) ∪ aprI(Y ).

(vi) Follows immediately by Proposition 3.7.

Proposition 3.9 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then for all X ⊆ U

i) aprI(X) = apr
I
(aprI(X))

ii) apr
I
(X) ⊆ aprI(aprI(X))

iii) apr
I
(X) = apr

I
(apr

I
(X))

iv) aprI(X) ⊆ aprI(aprI(X))

Proof:(i) Let Y = aprI(X) and u ∈ Y . Then u ∈ f(a) and f(a) ∩ X 6∈ I for some a ∈ A. By
Proposition 3.4(ii), Y = aprI(X) =

⋃
{f(a) : a ∈ A and f(a) ∩X 6∈ I}. So there exists a ∈ A such that

u ∈ f(a) ⊆ Y . Hence f(a)∩ Y ′ = φ ∈ I and consequently, u ∈ apr
I
(Y ). Therefore Y ⊆ apr

I
(Y ). On the

other hand, since apr
I
(Y ) ⊆ Y for any Y ⊆ U , then Y = apr

I
(Y ) as required.

(ii)Let Y = apr
I
(X) and u ∈ Y . Then u ∈ f(a) and f(a) ∩ X ′ ∈ I for some a ∈ A. But Y =
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apr
I
(X) = X ∩

⋃
{f(a) : a ∈ A and f(a) ∩X ′ ∈ I}. We deduce that u ∈ f(a) and f(a)∩Y = f(a)∩X ∩⋃

{f(a) : a ∈ A and f(a) ∩X ′ ∈ I} = f(a) ∩ X. If f(a) ∩ X ∈ I, then (f(a) ∩ X) ∪ (f(a) ∩ X ′) ∈ I
(by properties of ideal) i.e f(a) ∩ (X ∪′ X) = f(a) ∩ U = f(a) ∈ I a contradiction. Therefore,
f(a) ∩X = f(a) ∩ Y 6∈ I. Hence u ∈ aprI(Y ) and so Y ⊆ aprI(Y ).

(iii) Let Y = apr
I
(X) and u ∈ Y . Then u ∈ f(a) and f(a) ∩ X ′ ∈ I for some a ∈ A. But

Y = apr
I
(X) = X ∩

⋃
{f(a) : a ∈ A and f(a) ∩X ′ ∈ I}. We deduce that f(a) ∩X ⊆ Y . Hence

f(a) ∩ X ∩ Y ′ = (f(a) ∩ Y ′) ∩ X = φ. Hence f(a) ∩ Y ′ ⊆ X ′ and thus f(a) ∩ Y ′ ⊆ f(a) ∩ X ′.
Since f(a) ∩X ′ ∈ I, then f(a) ∩ Y ′ ∈ I. Consequently, u ∈ apr

I
(Y ). So Y ⊆ apr

I
(Y ).

(iv) Let Y = aprI(X) and u ∈ Y . Then u ∈ f(a) and f(a)∩X 6∈ I for some a ∈ A. But Y = aprI(X) =⋃
{f(a) : a ∈ A and f(a) ∩X 6∈ I}. It follows that u ∈ f(a) and f(a) ∩ Y = f(a) ⊇ f(a) ∩X 6∈ I by

properties of ideal. So u ∈ aprI(Y ) and hence Y ⊆ aprI(Y ).

In the following example we indicate that the inclusion in Proposition 3.9 may be strict.

Example 3.10 Let U = {u1, u2, u3, u4, u5, u6}, E = {e1, e2, e3, e4, e5, e6} and A = {e1, e2, e3, e4} ⊆ E.
Let FA be a soft over U given by Table 2. Let I be an ideal on U defined as follows
I = {φ, {u2}, {u3}, {u2, u3}}.Let X = {u1, u5, u6} ⊆ U . So we have X ′ = {u2, u3, u4}, and hence
apr

I
(X) = X ∩ {u1, u2, u5, u6} = {u1, u5, u6} = {u1, u5, u6} and aprI(X) = {u1, u2, u5, u6} = f(e1) ∪

f(e2) ∪ f(e4). Let Y = aprI(X). Then we have

apr
I
(aprI(X)) = apr

I
(Y ) = f(e1) ∪ f(e2) ∪ f(e4) = aprI(X) = Y .

Also, we have aprI(aprI(X)) = aprI(X) = Y⊃
6=
X = apr

I
(X), which suggests that the inclusion (ii) in

Proposition may hold strictly. Moreover, it is easy to see that apr
I
(apr

I
(X)) = apr

I
(X).

Let X1 = {u4, u6}, then aprI(X1) = {u1, u4, u6}. If Y = aprI(X1), then

aprI1(aprI(X1)) = aprI(Y1) = {u1, u2, u4, u5, u6}⊃
6=
Y1 = aprI(X1)

Proposition 3.11 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. Then the following properties hold

i) If fA is keeping union, then

a) for any X ⊆ U , there exists a ∈ A such that apr
I
(X) = f(a) ∩X

a) for any X ⊆ U , there exists a ∈ A such that aprI(X) = f(a)

ii) If fA is full and keeping union, then

aprI(X) = U for any X ⊆ U such that X 6∈ I

Proof:i) This holds by Proposition 3.4.
ii) Since fA is full and keeping union, then U =

⋃
a∈A

f(a) = f(a∗) for some a∗ ∈ A. For each X ⊆ U

such that X 6∈ I and each u ∈ U , u ∈ f(a∗) and f(a∗) ∩X = X 6∈ I. Therefore aprI(X) = U .

Proposition 3.12 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then for any X ⊆ U , X is soft I-definable if and only
if aprI(X) ⊆ X.

Proof: If X is soft I-definable, then aprI(X) = apr
I
(X) ⊆ X. Conversely, suppose that aprI(X) ⊆ X

for X ⊆ U . Since f(a) 6∈ I ∀a ∈ A, then apr
I
(X) ⊆ aprI(X) by Proposition 3.2. To show that X is

soft I-definable, it remains to prove that aprI(X) ⊆ apr
I
(X). Let u ∈ aprI(X). Then ∃a ∈ A, s.t u ∈

f(a), f(a) ∩X 6∈ I. It follows that u ∈ f(a) ⊆ aprI(X) ⊆ X. So u ∈ X, u ∈ f(a) and f(a)∩X ′ = φ ∈ I.
Therefore u ∈ apr

I
(X) and so aprI(X) ⊆ apr

I
(X) as required.
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Example 3.13 To illustrate the above result, we revisit Example 3.6. Let X = {u2, u4} ⊆ U .
So X ′ = {u1, u3, u5, u6}, aprI(X) = {u4} = aprI(X). Hence aprI(X) ⊆ X and X is soft I-definable set.

On the other hand, for X1 = {u4, u6} ⊆ U , X1
′ = {u1, u2, u3, u5}, aprI(X1) = {u4, u6} ∩ {u1, u4, u6} =

{u4, u6} and aprI(X1) = {u1, u4, u6}. Thus aprI(X1) 6⊆ X and X1 is soft I-rough set.

Proposition 3.14 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. The following conditions are equivalent

i) S is a full soft set.

ii) apr
I
(U) = U

iii) aprI(U) = U

Proof: apr
I
(U) = U ∩ (

⋃
{f(a) : a ∈ A and f(a) ∩ U ′ ∈ I}) =

⋃
{f(a) : a ∈ A and f(a) ∩ φ ∈ I}) =⋃

{f(a) : a ∈ A and φ ∈ I}) =
⋃

a∈A
f(a).

Hence by definition, S = (f,A) is a full soft set if and only if apr
I
(U) = U . That is, conditions (i) and

(ii) are equivalent. Similarly, we can show that (i) and (iii) are equivalent conditions.

Proposition 3.15 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. The following conditions are equivalent

i) X ⊆ aprI(X) ∀ X ⊆ U

ii) aprI({u}) 6= φ ∀ u ∈ U

Proof: Assume that (i) holds, then {u} ⊆ aprI({u}) ∀ u ∈ U i.e, aprI({u}) 6= φ.
Assume that (ii) holds. Let u ∈ X, so by (ii)aprI({u}) 6= φ. Let v ∈ aprI({u}), then ∃a ∈ A, s.t v ∈
f(a)and f(a) ∩ {u} 6∈ I. So f(a) ∩ {u} 6= φ. It follows that u = v ∈ f(a). Since f(a) ∩ {u} 6∈ I and
{u} ⊆ X, then f(a) ∩X 6∈ I. Consequently, u ∈ aprI(X).

Proposition 3.16 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. If aprI({u}) 6= φ ∀ u ∈ U , then for any X ⊆ U

i) (apr
I
(X))′ ⊆ aprI(X ′)

ii) NegI(X) = (aprI(X))′ ⊆ apr
I
(X ′)

Proof:If (apr
I
(X))′ is empty, then clearly we have the inclusion (i). Suppose (apr

I
(X))′ 6= φ. Let

u ∈ (apr
I
(X))′. Since fA is full, then ∃ao ∈ A, s.t u ∈ f(ao). Note also that

(apr
I
(X))′ = {u ∈ U : ∀a ∈ A, u ∈ f(a) ⇒ f(a) ∩X ′ 6∈ I} ∪ X ′. Thus it follows that either u ∈ X ′

or f(ao) ∩ X ′ 6∈ I since u ∈ f(ao). If u ∈ X ′, since aprI({u}) 6= φ ∀ u ∈ U , then X ′ ⊆ apr
I
(X ′)

by Proposition 3.15. Therefore u ∈ aprI(X
′). If f(ao) ∩ X ′ 6∈ I, then u ∈ aprI(X

′). Consequently,
(apr

I
(X))′ ⊆ aprI(X ′).

(ii)It is clear that the inclusion NegI(X) = (aprI(X))′ ⊆ apr
I
(X ′) holds when the set (aprI(X))′ is

empty. So suppose that (aprI(X))′ 6= φ. Let u ∈ (aprI(X))′. Since aprI({u}) 6= φ ∀ u ∈ U , then
X ⊆ aprI(X) by Proposition 3.15 and thus u ∈ X ′. Since fA is full, then ∃ao ∈ A, s.t u ∈ f(ao). But
we have that
NegI(X) = (aprI(X))′ = {u ∈ U : ∀a ∈ A, u ∈ f(a) ⇒ f(a) ∩X ∈ I}. Thus it follows that
f(ao) ∩ (X ′)′ ∈ I since u ∈ f(ao). Therefore u ∈ apr

I
(X ′).

Definition 3.17 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. Let X ⊆ U , We define the following seven types of soft rough
sets via ideal

i) X is roughly soft I-definable if apr
I
(X) 6= φ and aprI(X) 6= U

ii) X is internally soft I-definable if apr
I
(X) = φ and aprI(X) 6= U
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iii) X is externally soft I-definable if apr
I
(X) 6= φ and aprI(X) = U

iv) X is totally soft I-definable if apr
I
(X) = φ and aprI(X) = U

iv) X is externally soft P-I-definable if apr
I
(X) 6= φ and aprP (X) = U

iv) X is internally soft P-I-definable if apr
P

(X) = φ and aprI(X) 6= U

Proposition 3.18 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. Let X ⊆ U .

i) If X is roughly soft P-definable, then it is roughly soft I-definable.

ii) If X is totally soft I-definable, then it is totally soft P-definable.

Proof: Obvious.

Definition 3.19 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. For any X,Y ⊆ U we define

i) X ∼I Y ⇐⇒ apr
I
(X) = apr

I
(Y )

ii) X ∼I Y ⇐⇒ aprI(X) = aprI(Y )

iii) X ≈I Y ⇐⇒ X ∼I Y and X ∼I Y

These binary relations are called the lower soft rough equal relation via ideal,the upper soft rough equal
relation via ideal, and the soft rough equal relation via idea, respectively.
It is easy to verify that the relations defined above are all equivalence relations over ℘(U).

Proposition 3.20 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. For any X,Y ⊆ U we have

i) X ∼I Y ⇐⇒ X ∼I (X ∪ Y ) ∼I Y

ii) X ∼I X1,Y ∼I Y1=⇒ (X ∪ Y ) ∼I (X1 ∪ Y1)

iii) X ∼I Y =⇒ X ∪ (Y ′) ∼I U

iv) X ⊆ Y , Y ∼I φ ⇐⇒ X ∼I φ

v) X ⊆ Y , X ∼I U ⇐⇒ Y ∼I U

Proof:(i)If X ∼I Y , then aprI(X) = aprI(Y ). Since aprI(X ∪ Y ) = aprI(X) ∪ aprI(Y ), we deduce
aprI(X ∪ Y ) = aprI(X) = aprI(Y ) and so X ∼I (X ∪ Y ) ∼I Y . Conversely, if X ∼I (X ∪ Y ) ∼I Y ,
then we immediately have that X ∼I Y by using the transitivity of the relation ∼I .
(ii) Assume that X ∼I X1 and Y ∼I Y1. Then by definition, we know that aprI(X) = aprI(X1) and
aprI(Y ) = aprI(Y1). Since aprI(X ∪Y ) = aprI(X)∪aprI(Y ) and aprI(X1 ∪Y1) = aprI(X1)∪aprI(Y1),
we deduce that aprI(X ∪ Y ) = aprI(X1 ∪ Y1), whence (X ∪ Y ) ∼I (X1 ∪ Y1).
(iii) Suppose that X ∼I Y . Then by definition, aprI(X) = aprI(Y ). Since aprI(X ∪ Y ′) = aprI(X) ∪
aprI(Y

′) and aprI(U) = aprI(Y )∪aprI(Y ′), it follows that aprI(X∪Y ′) = aprI(U); henceX ∪ (Y ′) ∼I U
as required.
(iv) Let X ⊆ Y and Y ∼I φ. Then we deduce aprI(X) ⊆ aprI(Y ) = aprI(φ) = φ.
Hence aprI(X) = φ = aprI(φ), and so we have that X ∼I φ.
(v) Suppose that X ⊆ Y and X ∼I U . Then we deduce aprI(Y ) ⊇ aprI(X) = aprI(U). Since Y ⊆ U ,
then aprI(Y ) ⊇ aprI(U). Therefore aprI(Y ) = aprI(U), and so Y ∼I Y as required.

Proposition 3.21 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. If fA is keeping intersection, then for any X,Y ⊆ U
we have
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Table 3: An information table
u1 u2 u3 u4 u5 u6

Sex Woman Woman Man Man Man Man
Age category Young Young Matureage Old Mature age Baby
Living area City City City V illage City V illage

Habits NSND NSND Smoke SD Smoke NSND

i) X ∼I Y ⇐⇒ X ∼I (X ∩ Y ) ∼I Y

ii) X ∼I X1,Y ∼I Y1=⇒ (X ∩ Y ) ∼I (X1 ∩ Y1)

iii) X ∼I Y =⇒ X ∩ (Y ′) ∼I φ

iv) X ⊆ Y , Y ∼I φ =⇒ X ∼I φ

v) X ⊆ Y , X ∼I U ⇐⇒ Y ∼I U

Proposition 3.22 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. Then for any X ⊆ U

apr
I
(X) =

⋂
{Y ⊆ U : X ∼I Y }

Proof: Let u ∈ apr
I
(X). If X ∼I Y , then by definition apr

I
(X) = apr

I
(Y ). But apr

I
(Y ) ⊆ Y for any

Y ⊆ U . It follows that u ∈ apr
I
(X) = apr

I
(Y ) ⊆ Y .

Hence u ∈
⋂
{Y ⊆ U : X ∼I Y }, and so apr

I
(X) ⊆

⋂
{Y ⊆ U : X ∼I Y }. Next, we show that the reverse

inclusion
⋂
{Y ⊆ U : X ∼I Y } ⊆ apr

I
(X) also holds. Let u ∈

⋂
{Y ⊆ U : X ∼I Y }. Then by Propo-

sition 3.9, we have apr
I
(X) = apr

I
(apr

I
(X)). Thus X ∼I aprI(X), and it follows that u ∈ apr

I
(X).

Consequently, we conclude that apr
I
(X) =

⋂
{Y ⊆ U : X ∼I Y }.

Example 3.23 As in Example 3.6. Let X = {u4, u5, u6} ⊆ U . So we have X ′ = {u1, u2, u3},
and hence apr

I
(X) = X ∩ {u1, u2, u4, u5, u6} = {u4, u5, u6} = X. It is easy to see that

apr
I
(X) =

⋂
{Y ⊆ U : X ∼I Y }.

Example 3.24 Let us consider the following soft set S = fE which describes life expectancy. Suppose
that the universe U = {u1, u2, u3, u4, u5, u6} consists of six persons and E = {e1, e2, e3, e4} is a set of de-
cision parameters. The ei (i = 1,2,3,4) stands for ”under stress”, ”young”, ”drug addict” and ”healthy”.
Set f(e1) = {u1, u6}, f(e2) = {u5}, f(e3) = {u4} ; and f(e4) = {u1, u2, u6}. The soft set fE can be
viewed as the following collection of approximations:
fE = {(understress, {u1, u6}); (young, {u5}); (drugaddict, {u4}); (healthy; {u1, u2, u6})}.
On the other hand, ”life expectancy” topic can also be described using rough sets as follows: The evalu-
ation will be done in terms of attributes: ”sex”, ”age category”, ”living area”, ”habits”, characterized by
the value sets ”{man, woman}”, ”{baby, young, mature age, old}”, ”{village, city}”, ”{smoke, drinking,
smoke and drinking, no smoke and no drinking}”. We denote ”smoke and drinking” by SD and ”no
smoke and no drinking” by NSND. The information will be given by Table 3, where the rows are labeled
by attributes and the table entries are the attribute values for each person. From here we obtain the
following equivalence classes, induced by the above mentioned attributes:
[u1]

R
= [u2]

R
= {u1, u2}, [u3]

R
= [u5]

R
= {u3, u5}, [u4]

R
= {u4}, [u6]

R
= {u6}.

Let I be an ideal on U defined as follows
I = {φ, {u2}, {u3}, {u2, u3}}.
Let X be a target subset of U, that we wish to represent using the above equivalence classes. Hence we
analyze the upper and lower approximations of X, in some particular cases:
1. Let X = {u5}. It follows that
X∇I = {u5}, X4I = {u3, u5}. So X is R-I-rough.
Let us calculate now the soft I-lower and I-upper approximations of X. We obtain
apr

I
(X) = {u5} = X, aprI(X) = {u5} = X

hence X is soft I-definable.
2. Let X = {u2, u5}. It follows that apr

I
(X) = {u5} = aprI(X). So X is soft I-definable. On the other
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hand, apr
P

(X) = {u5}, aprP (X) = {u1, u2, u5, u6}, hence X is soft P -rough.

The above results show that soft rough set approximation via ideal is a worth considering alternative to
the rough set approximation via ideal. Soft rough sets via ideal could provide a better than rough sets
via ideal do, depending on the structure of the equivalence approximation classes and of the subsets f(e),
where e ∈ E.

.

4. The relations among soft sets, ideal and topologies

In this section, we investigate the relationship between topological soft sets, topologies and an ideal.

Theorem 4.1 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I) be
a soft approximation space via ideal. If fA is full, then

i) τf = {X ⊆ U : X = apr
I
(X)} is a generalized topology on U.

ii) If fA is keeping intersections, then τf is a topology on U.

Proof: Since apr
I
(φ) = φ, then φ ∈ τf . Let = ⊆ τf . Denote = = {Xα : α ∈ Γ} where Γ is an index set.

Put X =
⋃
{Xα : α ∈ Γ}. Since Xα ⊆ X for each α ∈ Γ, then Xα = apr

I
(Xα) ⊆ apr

I
(X) by Proposition

3.7. So X =
⋃
{Xα : α ∈ Γ} ⊆ apr

I
(X). Thus apr

I
(X) = X. This implies

⋃
{Xα : α ∈ Γ} ∈ τf . Hence

τf is a generalized topology on U.
(ii) By Propositions and apr

I
(U) = U and thus U ∈ τf . Let X,Y ∈ τf , then apr

I
(X ∩ Y ) =

apr
I
(X) ∩ apr

I
(Y ) = X ∩ Y by Proposition 3.8. So X ∩ Y ∈ τf . By (i) τf is a generalized topol-

ogy on U. Thus τf is a topology on U.

Definition 4.2 Let fA ∈ S(U,E) be full and keeping intersections and I be an ideal on U such
that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I) be a soft approximation space via ideal. Then τf is called the
topology induced by fA and an ideal I on U.

The following theorem gives the topological structure on soft sets and an ideal(i.e. the structure of
topology induced by soft set and an ideal).

Theorem 4.3 Let fA ∈ S(U,E) be full and keeping intersections and I be an ideal on U such
that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I) be a soft approximation space via ideal. Then

i) {aprI(X) : X ⊆ U} ⊆ τf = {apr
I
(X) : X ⊆ U}

ii) τf ⊇ {f(a) : a ∈ A}

iii) apr
I
(X) is an interior operator of τf

Proof: (i) Since aprI(X) = apr
I
(aprI(X)) by Proposition 3.9, then {aprI(X) : X ⊆ U} ⊆ τf .

Obviously,

τf ⊆ {aprI(X) : X ⊆ U}

Let Y ∈ {apr
I
(X) : X ⊆ U}. Then Y = apr

I
(X) for some X ⊆ U . By Proposition 3.9, apr

I
(X) =

apr
I
(apr

I
(X)). So Y ∈ τf . Thus τf ⊇ {aprI(X) : X ⊆ U}. Hence {aprI(X) : X ⊆ U} ⊆ τf =

{apr
I
(X) : X ⊆ U} as required.

(ii) For each a ∈ A, by Proposition 3.4 apr
I
(f(a)) = f(a)∩

⋃
{f(a∗) : a∗ ∈ A, f(a∗)∩(f(a))′ ∈ I} ⊆ f(a).

Since f(a) ∩ (f(a))′ = φ ∈ I, then f(a) ⊆ f(a) ∩
⋃
{f(a∗) : a∗ ∈ A, f(a∗) ∩ (f(a))′ ∈ I} = apr

I
(f(a)).

Hence f(a) = apr
I
(f(a)) and so f(a) ∈ τf . Therefore {f(a) : a ∈ A} ⊆ τf .

(iii)It suffices to show that apr
I
(X) = int(X) ∀X ⊆ U . By (i) apr

I
(X) ∈ τf and since apr

I
(X) ⊆ X, then
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apr
I
(X) ⊆ int(X). Conversely, let Y ∈ int(X), then Y ∈ τf and Y ⊆ X. So Y = apr

I
(Y ) ⊆ apr

I
(X).

Thus int(X) =
⋃
{Y : Y ∈ τf , Y ⊆ X} ⊆ aprI(X). Consequently, apr

I
(X) = int(X).

Definition 4.4 Let τ be a topology on U and I be an ideal on U. Put τ = {Ua : a ∈ A and Ua 6∈ I}
where A is the set of indexes. Define a mapping fτ : A→ ℘(U) by fτ (a) = Ua for each a ∈ A. Then, the
soft set (fτ )A over U is called the soft set induced by τ on U and an ideal I on U.

Proposition 4.5 (1)Let τ be a topology on U and I be an ideal on U. Let (fτ )A be the soft set
induced by τ and I on U. Then, (fτ )A is a full, keeping intersection, keeping union soft over U and
(fτ )A 6∈ I for each a ∈ A.

(2) Let τ1 and τ2 be two topologies on U and I1 and I2 be two ideals on U. Let (fτ1)A1 and (fτ2)A2

be two soft sets induced, respectively, by τ1 and I1 and, τ2 and I2 on U.
If τ1 ⊆ τ2, then

(fτ1)A1
⊇ (fτ2)A2

Proof: Obvious.

Proposition 4.6 Let τ be a topology on U, let I be an ideal on U such that G 6∈ I ∀G ∈ τ .
Then there exists a full, keeping intersection, and keeping union soft set fA with fA(a) 6∈ I for each a ∈ A
such that apr

I
(X) ⊇ int(X) for each X ∈ ℘(U) where (U, fA, I) be a soft approximation space via ideal.

Proof: Put τ = {Ua : a ∈ A}, where A is the set of indexes. Define a mapping f : A → ℘(U)
by

f(a) = Ua for each a ∈ A

By Proposition 4.5 fA is full, keeping intersection, and keeping union and fA(a) 6∈ I for each a ∈ A.
Now, we show that apr

I
(X) ⊇ int(X) for each X ∈ ℘(U). Let X ∈ ℘(U) and x ∈ int(X), then ∃ open

neighbourhood W of x s.t W ⊆ X. So, W = Ua for some a ∈ A. This implies x ∈ Ua = f(a) and
f(a) ∩X ′ = φ ∈ I. Therefore x ∈ apr

I
(X). Consequently, apr

I
(X) ⊇ int(X).

Theorem 4.7 Let fA be full and keeping intersections soft set over U and I be an ideal on U
such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I) be a soft approximation space via ideal. Let τf be the topology
induced by fA and I on U. Let (fτf )B be the soft set induced by τf and I on U. Then

fA ⊆ (fτf )B

Proof: By Theorem 4.3 τf ⊇ {f(a) : a ∈ A}. Let τf = {Ua : Ua 6∈ I, a ∈ B}, where A ⊆ B, Ua = f(a) ∀
a ∈ A. Therefore fτf : B → ℘(U), where fτf (a) = Ua for each a ∈ B. Hence fA ⊆ (fτf )B .

5. The relations between soft rough approximation via ideal and
rough approximation via ideal

In this section we will describe the relationship between rough sets via ideal and soft rough sets via ideal.

Definition 5.1 Let R be a binary relation on U and I be an ideal on U such that R(a) 6∈ I ∀a ∈ U .
Define a mapping fR : U → ℘(U) by

fR(a) = R(a)

for each a ∈ A, where A = U . Then, (fR)A is called the soft set induced by R and I on U.

Theorem 5.2 Let R be an equivalence relation on U and I be an ideal on U such that R(a) 6∈ I
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∀a ∈ U . Let (fR)A be the soft set induced by R and I on U. Let (U, (fR)A, I) be a soft approximation
space via ideal. If aprI({u}) 6= φ ∀ u ∈ U , then for all X ⊆ U , X∇I = apr

I
(X) and X4I = aprI(X).

Thus in this case,

i) X ⊆ U is R-I-definable iff X is a soft I-definable set.

ii) X ⊆ U is R-I-rough iff X is a soft I-rough set.

Proof: Let X ⊆ U and u ∈ U . We show that X∇I = apr
I
(X). If u ∈ RI(X) = {x ∈ X : [x]R ∩X ′ ∈ I},

then [u]R ∩ X ′ ∈ I. So, ∃ u ∈ X s.t u ∈ [u]R = fR(u) ∩ X ′ ∈ I. Therefore u ∈ apr
I
(X), and so

X∇I ⊆ apr
I
(X). Conversely, assume that u ∈ apr

I
(X). So,u ∈ X and ∃ v ∈ U s.t u ∈ fR(v) = [v]R,

[v]R ∩X ′ ∈ I. It follows that [u]R = [v]R. Thus [u]R ∩X ′ = [v]R ∩X ′ ∈ I and u ∈ X∇I . Consequently,
X∇I = apr

I
(X).

Now we show that X4I = aprI(X). Let u ∈ X4I , then either u ∈ X or [u]R ∩ X 6∈ I. If u ∈ X ,
then u ∈ aprI(X) by Proposition 3.15 since aprI({u}) 6= φ ∀ u ∈ U . If [u]R ∩ X 6∈ I, then ∃ u ∈ U
s.t u ∈ [u]R = fR(u) ∩ X 6∈ I and therefore u ∈ aprI(X). Therefore X4I ⊆ aprI(X). Conversely, let
u ∈ aprI(X). Then ∃ v ∈ U s .t u ∈ fR(v) = [v]R, [v]R ∩X 6∈ I. Thus [u]R = [v]R and [u]R ∩X 6∈ I .
Hence u ∈ X4I and consequently X4I = aprI(X).

Definition 5.3 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A
(i) Define a binary relation Rf on U by

xRfy ⇔ ∃ a ∈ A , {x, y} ⊆ f(a)

for each x, y ∈ U . Then Rf is called the binary relation induced by fA and I on U.
(ii) For each x ∈ U , define a successor neighbourhood (Rf )s(x) = {y ∈ U : xRfy}

Proposition 5.4 [35] Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
Rf be the binary relation induced by fA on U. Then, the following properties hold.

i) Rf is a symmetric relation.

ii) If fA is full, then Rf is a reflexive relation.

iii) If fA is a partition, then Rf is an equivalence relation.

Proposition 5.5 [35] Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let Rf
be the binary relation induced by fA on U. Then, the following properties hold.

i) If u ∈ f(a) for a ∈ A, then f(a) ⊆ Rf (u).

ii) If fA is a partition and u ∈ f(a) for a ∈ A, then f(a) = Rf (u).

iii) If fA is keeping union, then for all u ∈ U ∃a ∈ A, s.t Rf (u) = f(a).

Next, we define a new pair of soft rough approximation operators via ideal and giving the relationship
between this pair and previous one.

Definition 5.6 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I) be
a soft approximation space via ideal. We define a pair of operators apr′

P
, apr′P : ℘(U)→ ℘(U) as follows:

apr′
I
(X) = {x ∈ X : Rf (x) ∩X ′ ∈ I},

apr′I(X) = {x ∈ U : Rf (x) ∩X 6∈ I}
⋃
X

Proposition 5.7 Let fA ∈ S(U,E) be partition and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A.
Let (U, fA, I) be a soft approximation space via ideal. Let Rf be a binary relation induced by fA on U.
Then, the following properties hold for any X ⊆ U

i) If fA is full, then
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apr
I
(X) ⊇ apr′

I
(X)

ii) If fA is full, keeping union and X 6∈ I, then

aprI(X) ⊇ apr′I(X)

iii) If fA is partition, then

a) apr
I
(X) = apr′

I
(X)

b) If aprI({u}) 6= φ ∀ u ∈ U , then aprI(X) = apr′I(X)

Proof: i) Suppose that x ∈ apr′
I
(X). Then x ∈ X and Rf (x) ∩X ′ ∈ I. Since fA is full, then x ∈ f(a)

for some a ∈ A. By Proposition 5.5 f(a) ⊆ Rf (x). Thus, x ∈ f(a) and f(a) ∩X ′ ∈ I by properties of
ideal. Consequently, x ∈ apr

I
(X). So,

apr
I
(X) ⊇ apr′

I
(X)

ii)Since X 6∈ I, then X 6= φ. By Proposition 3.11(ii), aprI(X) = U . Thus

aprI(X) ⊇ apr′I(X)

iii) a) Suppose that x ∈ apr
I
(X). Then, x ∈ X and ∃ a ∈ A s.t x ∈ f(a) and f(a) ∩ X ′ ∈ I. Since

fA is partition and x ∈ f(a), then f(a) = Rf (x) by Proposition 3.11. This implies that x ∈ apr′
I
(X).

Therefore

apr
I
(X) ⊆ apr′

I
(X)

Since every partition soft set is full, then by i)

apr
I
(X) = apr′

I
(X)

iii) b) Suppose that x ∈ aprI(X). Then, ∃ a ∈ A s.t x ∈ f(a) and f(a) ∩X 6∈ I. Since fA is partition
and x ∈ f(a), then f(a) = Rf (x) by Proposition 3.11. This implies that x ∈ apr′I(X). Therefore

aprI(X) ⊆ apr′I(X)

Suppose that x ∈ apr′I(X). Then, either x ∈ X or Rf (x)∩X 6∈ I. If x ∈ X, since aprI({u}) 6= φ ∀ u ∈ U ,
then X ⊆ aprI(X) by Proposition 3.15 and therefore x ∈ aprI(X). If Rf (x) ∩ X 6∈ I, since fA is full,
then x ∈ f(a) for some a ∈ A. Since fA is partition and x ∈ f(a), then f(a) = Rf (x) by Proposition
3.11. This implies that x ∈ aprI(X). Therefore

apr′I(X) ⊆ aprI(X)

Hence aprI(X) = apr′I(X).

Theorem 5.8 Let fA ∈ S(U,E) be partition and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A.
Let (U, fA, I) be a soft approximation space via ideal. Let Rf be a binary relation induced by fA on U.
Then, for all X ⊆ U , X∇I = apr

I
(X) = apr′

I
(X) and X4I = aprI(X) = apr′I(X).

where X∇If and X4If are the rough approximations operators of X via ideal.
Proof: Follows immediately by Propositions 5.5 and 5.7.

Remark 5.9 Theorems 5.2 and 5.8 illustrate that rough set models via ideal can be viewed as a
special case of soft rough sets via ideal.

Proposition 5.10 Let fA ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal and Rf be a binary relation induced by fA on U.

i) If X ⊆ U is Rf -I- definable, then X is soft I-definable.

ii) If X ⊆ U is Rf -I- Rough, then X is soft I-Rough.
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Proof: (i) If X = φ, then X is soft I-definable by Proposition 3.7. Let φ 6= X ∈ ℘(U) be R-I-definable.
by Proposition 3.2, apr

I
(X) ⊆ aprI(X). It remains to show that aprI(X) ⊆ apr

I
(X). Let u ∈ aprI(X),

then there exists a ∈ A such that u ∈ f(a) and f(a) ∩X 6∈ I. By Proposition 5.5, f(a) ⊆ Rf (u). Since
f(a) ∩X 6∈ I, then Rf (u) ∩X 6∈ I by Properties of ideal. But u ∈ Rf (u), so u ∈ X4I = X∇I . Hence
u ∈ X and Rf (u) ∩ X ′ ∈ I. Therefore f(a) ∩ X ′ ∈ I by Properties of ideal and thus u ∈ apr

I
(X).

Consequently, aprI(X) ⊆ apr
I
(X). So X is soft I-definable.

(ii)Follows immediately by (i).

The following example shows that the converse of the above proposition is not true in general.

Example 5.11 Let U = {h1, h2, h3, h4, h5} . Let I be an ideal on U and let R be a binary rela-
tion on U, defined as follows:

I = {{h1}, {h2}, {h1, h2}, φ} and let fA be a soft set over U defined as follows

f(a1) = {h1, h4}, f(a2) = {h4}, f(a3) = {h2, h3, h5}, f(a4) = {h1, h2, h4}.
Let R be the binary relation induced by fA. Then

R(h1) = {h1, h2, h4}, R(h2) = {h1, h2, h3, h4, h5}, R(h3) = {h2, h3, h5}, R(h4) = {h1, h2, h4}, R(h5) =
{h2, h3, h5}.
Let X = {h2, h3, h5} ⊆ U . So X ′ = {h1, h4}. Thus X∇I = {h3, h5}, and X4I = {h2, h3, h5}. Also,
apr

I
(X) = {h2, h3, h5} , aprI(X) = {h2, h3, h5}.

Then X is an Rf -I-rough set. But X is soft I-definable set.

6 Application of data reduction using soft rough set via ideal

Definition 6.1 Let fiCi
∈ S(U,E) (i=1,2,.....n)be a bijective soft sets over U where Ci ∩ Cj = φ for

i 6= j. Denote fC = tni=1fiCi
, ϕ

K
= uni=1fiCi

.
Where C = ∪ni=1Ci and K = C1 × C2 × ...× Cn.

Definition 6.2 Let fA, gB ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Then the soft I-positive region of fA relative to gB is
defined as follows
posIfA(gB) =

⋃
b∈BaprIg(b) =

⋃
b∈B{x ∈ U : ∃e ∈ A, s.t x ∈ f(e) ∩ g(d)

′ ∈ I}.

Definition 6.3 Let fiCi
∈ S(U,E) (i=1,2,.....n) such that fiCi

is bijective where Ci ∩ Cj = φ for

i 6= j. Let gD be a partition soft set over U where C ∩D = φ. Let P = (U,ϕK) be a soft approximation
space. Then the triple (U, fC , gD) is called a soft decision system, fC is called the condition bijective soft
set and gD is called the decision partition soft set.
In soft decision system (U, f

C
, g

D
), we have

pos(ϕ,K)(g,D) =
⋃
d∈DaprP g(d) =

⋃
d∈D{u ∈ U : ∃e ∈ K, s.t x ∈ ϕ(e) ⊆ g(D)}

Definition 6.4 Let (U, fC , gD) be a soft decision system. Let I be an ideal on U such that ϕ(e) 6∈ I
∀e ∈ K. Let (U,ϕK , I) be a soft approximation space via ideal.
We have
posI(ϕK)(gD) =

⋃
d∈DaprIg(d) =

⋃
d∈D{x ∈ U : ∃e ∈ K, s.t x ∈ ϕ(e) ∩ g(d)

′ ∈ I}

Definition 6.5 Let (U, fC , gD) be a soft decision system and let 1 ≤ j ≤ n. Let I be an ideal
on U such that ϕ(e) 6∈ I ∀e ∈ K. Let (U,ϕK , I) be a soft approximation space via ideal. Then

i) fjCj
is called soft I-dispensable set fC relative to gD, if posI(ϕK)(g,D) = posI(ψQ)(g,D), where ψ

Q
=
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un
i=1,i 6=j

fiCi
. Otherwise fjCj

is called soft I-indispensable set fC relative to gD,

ii) fC is called a soft I-independent set relative to gD, if every soft bijective set fiCi
of fC is a soft

I-indispensable set relative to gD. Otherwise, fC is called a soft I-dependent set relative to gD

iii) The union of soft I-indispensable sets of fC relative to gD is called the I-core of fC relative to gD,
denoted by core(fC , gD).

Definition 6.6 Let (U, fC , gD) be a soft decision system and let 1 ≤ j ≤ n. Let I be an ideal on U
such that ϕ(e) 6∈ I ∀e ∈ K. Let (U,ϕK , I) be a soft approximation space via ideal. Let k = 1, 2, ...,m
and 1 ≤ Jk ≤ n, denote f∗C∗ = tmk=1fjkCjk

, ϕ∗
K∗

= umk=1fjkCjk
.

f∗C∗ is called soft I-relative reduction in (U, fC , gD) , if

i) posI(ϕK)(gD) = posI(ϕ∗
K∗ )

(gD)

ii) f∗C∗ is a soft I-independent set relative to gD

Definition 6.7 Let fA, gB ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let (U, fA, I)
be a soft approximation space via ideal. fA is said to I-depend on gB to a degree k (0 ≤≤ k ≤ 1), denoted
fA ⇒k gB , if

k = γ(fA, gB) =
|posIfA(gB)|
|U |

Accordingly, in a soft decision system (U, fC , gD), we have

k = γ(ϕ
K
, gD) =

|posIϕ
K

(gD)|
|U |

which called the I-dependent degree of condition bijective soft sets in classifying decision partition soft
sets. Obviously, we have 0 ≤ k ≤ 1.

i) If k = 1, then gD is completely I-dependent on fC .

ii) If k = 0, then gD is completely I-independent on fC .

Proposition 6.8 Let fA, gB ∈ S(U,E) and I be an ideal on U such that f(a) 6∈ I ∀a ∈ A. Let
(U, fA, I) be a soft approximation space via ideal. Let m,m ∈ N and m ≤ n. Then

γ(umi=1fiCi
, gD) ≤ γ(uni=1fiCi

, gD)

Proof: Since γ(ϕ
K
, gD) =

|posIϕ
K

(gD)|
|U | =

|
⋃

d∈D
apr

I
g(d)|

|U | =
|
⋃

d∈D
{x∈U :∃e∈K, s.t x∈ϕ(e)∩(g(d))′∈I}|

|U | ,

γ(ϕ∗
K
∗ , gD) =

|posI
ϕ∗
K
∗
(gD)|

|U | =
|
⋃

d∈D
apr

I
g(d)|

|U | =
|
⋃

d∈D
{x∈U :∃e∈K∗, s.t x∈ϕ∗(e)∩(g(d))′∈I}|

|U | ,

For any (c1, c2, ..., cn) ∈ C1 × C2 × ...× Cn, we have
ϕ(c1, c2, ..., cn) = f1(c1) ∩ f2(c2)∩, ... ∩ fm(cm) ∩ ... ∩ fn(cn).
Moreover, for any (c1, c2, ..., cm) ∈ C1 × C2 × ...× Cm, we have
ϕ(c1, c2, ..., cm) = f1(c1) ∩ f2(c2)∩, ... ∩ fm(cm). For m,n ∈ N and m ≤ n, apr∗

I
g(d) ⊆ apr

I
g(d). Thus⋃

d∈Dapr
∗
I
g(d) ⊆

⋃
d∈DaprIg(d). Hence

γ(umi=1fiCi
, gD) ≤ γ(uni=1fiCi

, gD)

Definition 6.9 Let (U, fC , gD) be a soft decision system and let 1 ≤ j ≤ n. Let I be an ideal on U
such that ϕ(e) 6∈ I ∀e ∈ K. Let (U,ϕK , I) be a soft approximation space via ideal. The I- conditional
significance of fiCi

in fC relative to gD is denoted and defined as follows

s(fjCj
, fC , gD) = γ(umi=1fiCi

, gD)− γ(umi=1,i6=jfiCi
, gD)
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This significance shows the decrease of the I-dependent degree of decision partition soft sets when
deleting on bijective soft set fjCj

from fC .

Proposition 6.10 Let (U, fC , gD) be a soft decision system and let 1 ≤ j ≤ n. Let I be an ideal on U
such that ϕ(e) 6∈ I ∀e ∈ K. Let (U,ϕK , I) be a soft approximation space via ideal. Let 1 ≤ j ≤ n, then

i) 0 ≤ s(fjCj
, fC , gD) ≤ 1,

ii) fjCj
is a soft I-indispensable set of fC iff s(fjCj

, fC , gD) ≥ 0,

iii) core(fC , gD) = t{fjCj
: s(fjCj

, fC , gD) ≥ 0, j = 1, 2, ..., n}

Theorem 6.11 Let (U, fC , gD) be a soft decision system and let 1 ≤ j ≤ n. Let I be an ideal on
U such that ϕ(e) 6∈ I ∀e ∈ K. Let (U,ϕK , I) be a soft approximation space via ideal. Let k = 1, 2, ...,m
and 1 ≤ jk ≤ n, denote
f∗C∗ = tmk=1fjkCjk

, ϕ∗∗
K

= umk=1fjkCjk

Where C∗ = ∪mjk=1Ci and K∗ = Cj1 × Cj2 × ...× Cjm .
If γ(ϕ∗∗

K
, gD) = γ(ϕ

K
, gD) and s(fjCj

, fC , gD) ≥ 0, then f∗∗C is I-relative reduction of (U, fC , gD).

Definition 6.12 Let (U, fC , gD) be a soft decision system and let 1 ≤ j ≤ n. Let I be an ideal
on U such that ϕ(e) 6∈ I ∀e ∈ K. Let (U,ϕK , I) be a soft approximation space via ideal. Let e ∈ K,
d ∈ D. The soft I-rough membership function of ϕ(e) relative to g(d) is denoted and defined by

ξ(ϕ(e), g(d)) =
|ϕ(e) ∩ g(d)|
|ϕ(e)|

Theorem 6.13 Let (U, fC , gD) be a soft decision system and let 1 ≤ j ≤ n. Let I be an ideal on U
such that ϕ(e) 6∈ I ∀e ∈ K. Let (U,ϕK , I) be a soft approximation space via ideal. Let k = 1, 2, ...,m
and 1 ≤ jk ≤ n, denote
f∗C∗ = tmk=1fjkCjk

, ϕ∗∗
K

= umk=1fjkCjk

Where C∗ = ∪mjk=1Ci and K∗ = Cj1 ×Cj2 × ...×Cjm . Let f∗C∗ is I-relative reduction of (U, fC , gD), then
the I-multi-attribute decision rule induced by f∗C∗ in (U, fC , gD) is

if e, then d(ξ(ϕ∗(e), g(d)))

where e ∈ K∗, d ∈ D and ξ(ϕ∗(e), g(d)) denotes the soft I-rough membership function of ϕ∗(e) relative
to g(d), which expresses the support degree of rules.

Example 6.14 (Acute Coronary Syndrome) Let U = {x1, x2, x3, x4, x5, x6} is a universe which
is a set of six patients suffered from chest pain that raise the possibility of Acute coronary syndrome
(Acs). We want to decide which type of ACS according to symptoms, ECG and cardiac enzymes because
the way of management differ completely between the 3 types. Let C = ∪3i=1Ci denotes the attributes
set where C1 stands for symptoms, C2 stands for ECG and C3 stands for cardiac enzymes. The value
sets of these attributes are

C1 = {chest pain at rest(increasing exertion), Pallor and sweeting, vomiting withchest pain}

C2 = {ST segment elevation, TS segment elevation with or without T wave inversion}

C3 = {highly elevated Troponin,CKMB}. And D = {NSTEMI, STEMI} describes the Acute
coronary syndrome STEMI AND NSTEMI.

Suppose that the six patients are characterized by the condition bijective soft set ∪3i=1Ci and the
disease (NSTEMI or STEMI) is characterized by the decision partition soft set gD.
The mapping of each bijective soft set over U is defined as follows:
f1(increasing exertion) = {x1, x6}, f1(Pallor and sweeting) = {x2, x3, x5}, f1(vomiting withchest pain) =
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Table 4: Tabular representation of ϕK
x1 x2 x3 x4 x5 x6

e1 1 0 0 0 0 0
e2 0 1 1 0 0 0
e3 0 0 0 1 0 0
e4 0 0 0 0 1 0
e5 0 0 0 0 0 1

{x4},
f2(ST segment elevation) = {x1, x2, x3}, f2(TS segment elevation with or without T wave inversion) =
{x4, x5, x6},
f3(highly elevated Troponin) = {x1, x2, x3, x4}, f3(Mildly elevated Troponin) = {x5, x6}.
The mapping of the decision partition soft set over U is defined as follows:
g(NSTEMI) = {x1, x3, x6}, g(STEMI) = {x2, x4, x5}.
Then we can view each bijective soft set fiCi

as a collection of approximations as follows:
f1C1

= {increasing exertion = {x1, x6}, Pallor and sweeting = {x2, x3, x5}, vomiting with chest pain =
{x4}}
f2C2

= {ST segment elevation = {x1, x2, x3}, TS segment depression with or without T wave inversion =
{x4, x5, x6}}
f3C3

= {highly elevated Troponin = {x1, x2, x3, x4},Mildly elevated Troponin = {x5, x6}}
Similarly, gD = {NSTEMI = {x1, x3, x6}, STEMI = {x2, x4, x5}}.
Denote

fC = t3i=1fiCi
, ϕK = u3i=1fiCi

where C = ∪3i=1Ci and K = ∩3i=1Ci.
Let ei ∈ K, then
e1 = {increasing exertion and ST segment elevation and highly elevated Troponin}
e2 = {Pallor and sweeting and ST segment elevation and highly elevated Troponin}
e3 = {vomiting with chest pain and TS segment depression with or without T wave inversion highly
elevated Troponin}
e4 = {Pallor and sweeting and TS segment depression with or without T wave inversion Mildly
elevated Troponin}
e5 = {increasing exertion and TS segment depression with or without T wave inversion and Mildly
elevated Troponin}
ϕ(e1) = {x1}, ϕ(e2) = {x2, x3}, ϕ(e3) = {x4},
ϕ(e4) = {x5}, ϕ(e5) = {x6}.
The tabular representation of ϕK is given in Table 4

Thus (U, fC , gD) is a soft decision system on how to dignose NSTEMI OR STEMI diseases. Let I
be an ideal on U defined as follows
I = {φ, {x2}, {x5}, {x2, x5}}, so (U,ϕK , I) is a soft approximation space via ideal. Hence
apr

I
g(highly elevated Troponin) = {x1, x3, x6} and apr

I
g(mildly elevated Troponin) = {x4, x5}.

Therefore posI(ϕK)(gD) = {x1, x3, x4, x5, x6}
Denote ϕ1k1 = f1C1

u f2C2
, ϕ2k2 = f1C1

u f3C3
, ϕ3k3 = f2C2

u f3C3
. We have

posI(ϕ1K1
)(gD) = posI(ϕ2K2

)(gD) = posI(ϕK)(gD) = {x1, x3, x4, x5, x6}, posI(ϕ3K3
)(gD) = {x1, x3, x4, x6}.

But posI(f1C1
)(gD) = {x1, x3, x4, x6} 6= posI(ϕK)(gD),

posI(f3C3
)(gD) = {x6} 6= posI(ϕK)(gD).

Therefore f1C1
t f2C2

and f1C1
t f3C3

are both I-relative reductions in (U, fC , gD).
The I-dependent degree of the decision partition soft set gD upon the condition bijective soft set fC

k = γ(ϕ
K
, gD) =

|posIϕ
K

(gD)|
|U |

=
|{x1, x3, x4, x5, x6}|

|U |
=

5

6

In the following we will give an algorithm for I-multi-attribute decision rule.
Algorithm:
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Step 1. Construct a soft decision system (U, fC , gD)

Step 2. Calculate the I-dependent degree of gD upon uni=1,i6=jfiCi
(j=1,2,...n)

Step 3. Calculate each I-conditional significance of fjCj
relative to gD by

Step 4. Find I-core(fC , gD) by

Step 5. Find I-relative reductions in (U, fC , gD) by

(1) If γ(core(fC , gD), gD) = γ(fC , gD), then core(fC , gD) is I-relative reduction in (U, fC , gD). In
this case, the process stops. Otherwise, it continuous 2

(2) Denote core(fC , gD) = umk=1fjkCjk
, where k = 1, 2, ...,m and 1 ≤ jk ≤ n

(a) Calculate the I-conditional significance of each bijective soft set fiCi
i 6= jk about tmk=1fjkCjk

relative to gD by

(b) Select fiCi
with maximal I-conditional significance one by one. If there are many soft

sets with the same maximal significance, we choose the attribute set containing the most
elements. So core(fC , gD) t fiCi

is I-relative reduction in (U, fC , gD)

Step 6. Obtain I-decision rules by I-relative reduction in soft decision system (U, fC , gD).

7. Conclusion

In this paper, we have proposed the new concept of soft rough sets via ideal. We presented important
properties of soft rough approximations via ideal based on soft approximation spaces via ideal, giving
interesting examples. The accuracy measure is one of the ways of characterizing soft rough theory. Our
approach makes the accuracy measures higher than the existing approximations. Soft rough relations via
ideal were discussed. We researched relationships among soft sets, soft rough sets via ideal and topologies,
obtained the structure of soft rough sets via ideal. Furthermore, we examined the relationship between
soft rough sets via ideal and rough sets via ideal, and compared these two different models.
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